Zen4 Pro Max

Zen4 Pro Max is an 80B MoE (3B active) parameter language model from the Zen4 family by Zen LM and Hanzo AI.

The ultimate consumer model with hybrid Gated DeltaNet + Gated Attention + MoE architecture, running at just 3B active parameters. Built on abliterated (uncensored) weights from Qwen3-Next-80B-A3B-Instruct.

Model Details

Property Value
Parameters 80B total, 3B active
Context 256K tokens
Base Qwen3-Next-80B-A3B-Instruct (abliterated)
Architecture Hybrid DeltaNet + MoE, 512 experts
License Apache 2.0
Family Zen4
Creator Zen LM / Hanzo AI

Zen4 Family

Model Params Active Context HuggingFace
Zen4 Mini 4B 4B 32K zenlm/zen4-mini
Zen4 8B 8B 32K zenlm/zen4
Zen4 Pro 14B 14B 32K zenlm/zen4-pro
Zen4 Max 30B MoE 3B 256K zenlm/zen4-max
Zen4 Pro Max 80B MoE 3B 256K zenlm/zen4-pro-max
Zen4 Coder Flash 31B MoE 3B 131K zenlm/zen4-coder-flash
Zen4 Coder 80B MoE 3B 256K zenlm/zen4-coder
Zen4 Ultra 1.04T MoE 32B 256K zenlm/zen4-ultra

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("zenlm/zen4-pro-max")
tokenizer = AutoTokenizer.from_pretrained("zenlm/zen4-pro-max")

messages = [{"role": "user", "content": "Hello, who are you?"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Links

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zenlm/zen4-pro-max