Humanizer LoRA Adapter
This is a LoRA (Low-Rank Adaptation) adapter for Llama3 8B Instruct that converts formal text into more natural, human-like language.
Model Details
- Base Model: meta-llama/Meta-Llama-3-8B-Instruct
- Adapter Type: LoRA (Low-Rank Adaptation)
- LoRA Rank: 32
- LoRA Alpha: 64
- Target Modules: {'k_proj', 'gate_proj', 'q_proj', 'v_proj', 'up_proj', 'down_proj', 'o_proj'}
- Task: Text humanization - converting formal/academic text to conversational style
Files Included
This adapter includes all necessary files:
adapter_config.json- LoRA configurationadapter_model.safetensors- LoRA weightsspecial_tokens_map.json- Special tokens mappingtokenizer.json- Tokenizer vocabularytokenizer_config.json- Tokenizer configurationtraining_args.bin- Training arguments
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model and tokenizer
base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
# Load LoRA adapter
adapter_name = "arda24/Humanizer"
model = PeftModel.from_pretrained(model, adapter_name)
# Prepare input
prompt = "### Instruction:
rewrite this text in a natural and human like way
### Input:
The system requires authentication before proceeding.
### Response:
"
# Generate humanized text
inputs = tokenizer(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.3,
do_sample=True,
top_p=0.7,
repetition_penalty=1.05,
no_repeat_ngram_size=2
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
humanized_text = response.split("### Response:")[1].strip()
print(humanized_text)
Example
Input: "The system requires authentication before proceeding."
Output: "You need to log in first before you can access the system."
Training Configuration
- LoRA Rank: 32
- LoRA Alpha: 64
- Learning Rate: 1e-5
- Batch Size: 1
- Gradient Accumulation Steps: 16
- Training Steps: ~4000
Advantages of LoRA
- Smaller size: Only ~50MB vs several GB for full model
- Faster loading: Loads quickly on top of base model
- Flexible: Can be combined with other adapters
- Efficient: Uses minimal additional parameters
Limitations
- Works best with formal/academic text
- May occasionally add citations if not properly controlled
- Conservative settings recommended for minimal changes
- Not suitable for creative writing or fiction
License
This adapter is based on Llama3 8B Instruct and follows the same license terms.