|
|
--- |
|
|
license: mit |
|
|
language: |
|
|
- en |
|
|
pretty_name: ABX-HT-010 Drug-Drug Interaction Emergence |
|
|
tags: |
|
|
- antibiotics |
|
|
- toxicity |
|
|
- ddi |
|
|
- drug-interaction |
|
|
- pharmacokinetics |
|
|
- tabular |
|
|
task_categories: |
|
|
- tabular-classification |
|
|
size_categories: |
|
|
- n<1k |
|
|
--- |
|
|
|
|
|
ABX-HT-010 Drug-Drug Interaction Emergence |
|
|
|
|
|
Purpose |
|
|
|
|
|
Detect early interaction emergence when antibiotic exposure stops tracking expected interaction shift with concomitant medications. |
|
|
|
|
|
Core pattern |
|
|
|
|
|
- host_stress_index high |
|
|
- concomitant_exposure_index high |
|
|
- ddi_coherence_index drops |
|
|
- interaction_shift_deviation stays high |
|
|
- later_adverse_ddi_flag appears |
|
|
|
|
|
Files |
|
|
|
|
|
- data/train.csv |
|
|
- data/test.csv |
|
|
- scorer.py |
|
|
|
|
|
Schema |
|
|
|
|
|
Each row is one timepoint in a within series PK and medication exposure course. |
|
|
|
|
|
Required columns |
|
|
|
|
|
- row_id |
|
|
- series_id |
|
|
- timepoint_h |
|
|
- host_model |
|
|
- abx_drug |
|
|
- abx_dose_mg |
|
|
- abx_conc_ng_mL |
|
|
- expected_abx_conc_ng_mL |
|
|
- abx_conc_deviation |
|
|
- concomitant_drug |
|
|
- concomitant_exposure_index |
|
|
- expected_interaction_shift |
|
|
- interaction_shift_deviation |
|
|
- ddi_coherence_index |
|
|
- host_stress_index |
|
|
- later_adverse_ddi_flag |
|
|
- assay_method |
|
|
- source_type |
|
|
- ddi_emergence_signal |
|
|
- earliest_ddi_emergence |
|
|
|
|
|
Labels |
|
|
|
|
|
- ddi_emergence_signal |
|
|
- 1 for rows at or after first confirmed emergence onset |
|
|
|
|
|
- earliest_ddi_emergence |
|
|
- 1 only for the first onset row in that series |
|
|
|
|
|
Scorer logic in v1 |
|
|
|
|
|
- require a concomitant medication signal in the series |
|
|
- candidate onset point |
|
|
- host_stress_index at least 0.80 |
|
|
- concomitant_exposure_index at least 0.80 |
|
|
- ddi_coherence_index at most 0.40 |
|
|
- absolute interaction_shift_deviation at least 40 for two consecutive points |
|
|
- ignore one point deviation spike then recovery artifacts |
|
|
- confirmation |
|
|
- later_adverse_ddi_flag equals 1 later in series |
|
|
|
|
|
Evaluation |
|
|
|
|
|
Run |
|
|
|
|
|
- python scorer.py --path data/test.csv |
|
|
|