File size: 5,984 Bytes
55b6cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a703b
 
 
 
 
d87d231
57a703b
 
55b6cbc
 
 
 
 
d87d231
55b6cbc
 
 
 
57a703b
55b6cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a703b
55b6cbc
 
 
 
 
 
 
 
 
 
57a703b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b6cbc
 
 
 
 
 
 
 
57a703b
55b6cbc
 
 
 
 
 
 
 
 
 
 
 
57a703b
55b6cbc
 
 
 
 
 
 
 
d87d231
 
 
 
 
 
 
 
55b6cbc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: apache-2.0
task_categories:
  - text-classification
language:
  - en
tags:
  - finance
  - earnings-calls
  - evasion-detection
  - nlp
pretty_name: EvasionBench
size_categories:
  - 10K<n<100K
---

# EvasionBench

<p align="center">
  <a href="https://iiiiqiiii.github.io/EvasionBench"><img src="https://img.shields.io/badge/Project-Page-blue?style=for-the-badge" alt="Project Page"></a>
  <a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
  <a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
  <a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
  <a href="https://arxiv.org/abs/2601.09142"><img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge" alt="Paper"></a>
</p>

EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.

## Dataset Description

- **Repository:** [https://github.com/IIIIQIIII/EvasionBench](https://github.com/IIIIQIIII/EvasionBench)
- **Paper:** [https://arxiv.org/abs/2601.09142](https://arxiv.org/abs/2601.09142)
- **Point of Contact:** [GitHub Issues](https://github.com/IIIIQIIII/EvasionBench/issues)

### Dataset Summary

This dataset contains 16,726 question-answer pairs from earnings call transcripts, each labeled with one of three evasion levels. The labels were generated using the Eva-4B-V2 model, a fine-tuned classifier specifically trained for financial discourse evasion detection.

### Supported Tasks

- **Text Classification**: Classify the directness of management responses to analyst questions.

### Languages

English

## Dataset Structure

### Data Fields

| Field | Type | Description |
|-------|------|-------------|
| `uid` | string | Unique identifier for each sample |
| `question` | string | Analyst's question during the earnings call |
| `answer` | string | Management's response to the question |
| `eva4b_label` | string | Evasion label: `direct`, `intermediate`, or `fully_evasive` |

### Label Definitions

| Label | Definition | Description |
|-------|------------|-------------|
| `direct` | The core question is directly and explicitly answered | Clear figures, "Yes/No" stance, or direct explanations |
| `intermediate` | The response provides related context but sidesteps the specific core | Hedging, providing a range instead of a point, or answering adjacent topics |
| `fully_evasive` | The question is ignored, explicitly refused, or the response is entirely off-topic | Explicit refusal, total redirection, or irrelevant responses |

### Data Statistics

| Metric | Value |
|--------|-------|
| Total Samples | 16,726 |
| Direct | 8,749 (52.3%) |
| Intermediate | 7,359 (44.0%) |
| Fully Evasive | 618 (3.7%) |

### Example

```python
{
    "uid": "4addbff893b81f64131fdc712d7a6d9a",
    "question": "What is the expected margin for Q4?",
    "answer": "We expect it to be 32%.",
    "eva4b_label": "direct"
}
```

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

dataset = load_dataset("FutureMa/EvasionBench")
```

### Loading from Parquet

```python
import pandas as pd

df = pd.read_parquet("evasionbench_17k_eva4b_labels_dedup.parquet")
```

### Quick Start: Inference with Eva-4B-V2

````python
from datasets import load_dataset
from transformers import pipeline

# Load dataset
dataset = load_dataset("FutureMa/EvasionBench")

# Load model using text-generation pipeline
pipe = pipeline("text-generation", model="FutureMa/Eva-4B-V2", device_map="auto")

# Get a sample
sample = dataset["train"][0]
question = sample["question"]
answer = sample["answer"]

# Prepare prompt
prompt = f"""You are a financial analyst. Your task is to Detect Evasive Answers in Financial Q&A

Question: {question}
Answer: {answer}

Response format:
```json
{{"label": "direct|intermediate|fully_evasive"}}
```

Answer in ```json content, no other text"""

# Run inference
result = pipe(prompt, max_new_tokens=64, do_sample=False)
print(result[0]["generated_text"])
````

For a complete inference example with batch processing and evaluation, see our [Colab notebook](https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb).

## Dataset Creation

### Source Data

The question-answer pairs are derived from publicly available earnings call transcripts.

### Annotation Process

Labels were generated using **Eva-4B-V2**, a 4B parameter model fine-tuned specifically for evasion detection in financial discourse. Eva-4B-V2 achieves 84.9% Macro-F1 on the EvasionBench evaluation set, outperforming frontier LLMs including Claude Opus 4.5 and Gemini 3 Flash.

## Considerations for Using the Data

### Social Impact

This dataset can be used to:
- Improve transparency in corporate communications
- Assist financial analysts in identifying evasive responses
- Support research in financial NLP and discourse analysis

### Limitations

- Labels are model-generated (Eva-4B-V2) rather than human-annotated
- The dataset reflects the distribution of evasion patterns in the source data
- Performance may vary across different industries or time periods

## Citation

If you use this dataset, please cite:

```bibtex
@misc{ma2026evasionbenchlargescalebenchmarkdetecting,
  title={EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A},
  author={Shijian Ma and Yan Lin and Yi Yang},
  year={2026},
  eprint={2601.09142},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url={https://arxiv.org/abs/2601.09142}
}
```

## License

Apache 2.0