Wuhuwill's picture
Upload ProDiff/diffProModel/Diffusion.py with huggingface_hub
d180a10 verified
import math
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
def get_timestep_embedding(timesteps, embedding_dim):
"""Build sinusoidal timestep embeddings.
Args:
timesteps (torch.Tensor): A 1-D Tensor of N timesteps.
embedding_dim (int): The dimension of the embedding.
Returns:
torch.Tensor: N x embedding_dim Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = np.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.cuda() # Move embedding to CUDA device
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # Zero pad if embedding_dim is odd
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Attention(nn.Module):
"""A simple attention layer to get weights for attributes."""
def __init__(self, embedding_dim):
super(Attention, self).__init__()
self.fc = nn.Linear(embedding_dim, 1)
def forward(self, x):
# x shape: (batch_size, num_attributes, embedding_dim)
weights = self.fc(x) # shape: (batch_size, num_attributes, 1)
# Apply softmax along the attributes dimension to get attention weights.
weights = F.softmax(weights, dim=1)
return weights
class WideAndDeep(nn.Module):
"""Network to combine attribute (start/end points) and prototype embeddings."""
def __init__(self, in_channels, embedding_dim=512):
super(WideAndDeep, self).__init__()
# Process start point and end point independently
self.start_fc1 = nn.Linear(in_channels, embedding_dim)
self.start_fc2 = nn.Linear(embedding_dim, embedding_dim)
self.end_fc1 = nn.Linear(in_channels, embedding_dim)
self.end_fc2 = nn.Linear(embedding_dim, embedding_dim)
# Process prototype features
self.prototype_fc1 = nn.Linear(512, embedding_dim)
self.prototype_fc2 = nn.Linear(embedding_dim, embedding_dim)
self.relu = nn.ReLU()
def forward(self, attr, prototype):
# attr shape: (batch_size, num_features, traj_length)
# prototype shape: (batch_size, prototype_embedding_dim) - assuming N_CLUSTER is handled before or it's single prototype
start_point = attr[:, :, 0].float() # First point in trajectory features
end_point = attr[:, :, -1].float() # Last point in trajectory features
# Process start point features
start_x = self.start_fc1(start_point)
start_x = self.relu(start_x)
start_embed = self.start_fc2(start_x)
# Process end point features
end_x = self.end_fc1(end_point)
end_x = self.relu(end_x)
end_embed = self.end_fc2(end_x)
# Combine the processed start and end point features
attr_embed = start_embed + end_embed
# Process prototype features
proto_x = self.prototype_fc1(prototype)
proto_x = self.relu(proto_x)
proto_embed = self.prototype_fc2(proto_x)
# Combine the processed attribute and prototype features
combined_embed = attr_embed + proto_embed # Simple addition for combination
return combined_embed
def nonlinearity(x):
# Swish activation function (SiLU)
return x * torch.sigmoid(x)
def Normalize(in_channels):
"""Group normalization."""
return torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
class Upsample(nn.Module):
"""Upsampling layer, optionally with a 1D convolution."""
def __init__(self, in_channels, with_conv=True):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x,
scale_factor=2.0,
mode="nearest") # Upsample using nearest neighbor
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""Downsampling layer, optionally with a 1D convolution."""
def __init__(self, in_channels, with_conv=True):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# No asymmetric padding in torch.nn.Conv1d, must do it ourselves via F.pad.
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (1, 1) # Padding for kernel_size=3, stride=2 to maintain roughly half size
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) # Avg pool if no conv
return x
class ResnetBlock(nn.Module):
"""Residual block for the U-Net."""
def __init__(self,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout=0.1,
temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv1d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3, # Convolutional shortcut
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=1, # 1x1 convolution (Network-in-Network) shortcut
stride=1,
padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = h + self.temb_proj(nonlinearity(temb))[:, :, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
"""Self-attention block for the U-Net."""
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_) # Query
k = self.k(h_) # Key
v = self.v(h_) # Value
b, c, w = q.shape
q = q.permute(0, 2, 1) # b,w,c (sequence_length, channels)
w_ = torch.bmm(q, k) # b,w,w (attention scores: q @ k.T)
w_ = w_ * (int(c)**(-0.5)) # Scale by sqrt(channel_dim)
w_ = torch.nn.functional.softmax(w_, dim=2) # Softmax over scores
# attend to values
w_ = w_.permute(0, 2, 1) # b,w,w (transpose back for v @ w_ if v is b,c,w)
h_ = torch.bmm(v, w_) # Weighted sum of values
h_ = h_.reshape(b, c, w)
h_ = self.proj_out(h_)
return x + h_ # Add residual connection
class Model(nn.Module):
"""The core U-Net model for the diffusion process."""
def __init__(self, config):
super(Model, self).__init__()
self.config = config
ch, out_ch, ch_mult = config.model.ch, config.model.out_ch, tuple(config.model.ch_mult)
num_res_blocks = config.model.num_res_blocks
attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
in_channels = config.model.in_channels
resolution = config.data.traj_length
resamp_with_conv = config.model.resamp_with_conv
num_timesteps = config.diffusion.num_diffusion_timesteps
if config.model.type == 'bayesian':
self.logvar = nn.Parameter(torch.zeros(num_timesteps))
self.ch = ch
self.temb_ch = self.ch * 4
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# timestep embedding
self.temb = nn.Module()
self.temb.dense = nn.ModuleList([
torch.nn.Linear(self.ch, self.temb_ch),
torch.nn.Linear(self.temb_ch, self.temb_ch),
])
# downsampling
self.conv_in = torch.nn.Conv1d(in_channels, # in_channels related to embedding_dim, not traj_length. Input format (batch_size, embedding_dim, traj_length)
self.ch,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_ch_mult = (1, ) + ch_mult
self.down = nn.ModuleList()
block_in = None
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle block
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
skip_in = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
if i_block == self.num_res_blocks:
skip_in = ch * in_ch_mult[i_level]
block.append(
ResnetBlock(in_channels=block_in + skip_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # Prepend to get consistent order for upsampling path
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv1d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, t, extra_embed=None):
assert x.shape[2] == self.resolution # Ensure input trajectory length matches model resolution
# timestep embedding
temb = get_timestep_embedding(t, self.ch)
temb = self.temb.dense[0](temb)
temb = nonlinearity(temb)
temb = self.temb.dense[1](temb)
if extra_embed is not None:
temb = temb + extra_embed
# downsampling
hs = [self.conv_in(x)] # List to store hidden states for skip connections
# print(hs[-1].shape)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
# print(i_level, i_block, h.shape)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
# print(hs[-1].shape)
# print(len(hs))
h = hs[-1] # Last hidden state from downsampling path
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# print(h.shape)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
ht = hs.pop() # Get corresponding hidden state from downsampling path
if ht.size(-1) != h.size(-1):
# Pad if spatial dimensions do not match (can happen with odd resolutions)
h = torch.nn.functional.pad(h,
(0, ht.size(-1) - h.size(-1)))
h = self.up[i_level].block[i_block](torch.cat([h, ht], dim=1), # Concatenate skip connection
temb)
# print(i_level, i_block, h.shape)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Guide_UNet(nn.Module):
"""A U-Net model guided by attribute and prototype embeddings."""
def __init__(self, config):
super(Guide_UNet, self).__init__()
self.config = config
self.in_channels = config.model.in_channels
self.ch = config.model.ch * 4
self.attr_dim = config.model.attr_dim
self.guidance_scale = config.model.guidance_scale
self.unet = Model(config)
self.guide_emb = WideAndDeep(self.in_channels, self.ch)
self.place_emb = WideAndDeep(self.in_channels, self.ch)
def forward(self, x, t, attr, prototype):
guide_emb = self.guide_emb(attr, prototype) # Conditional embedding
target_device = attr.device # Get device from an existing input tensor
place_vector = torch.zeros(attr.shape, device=target_device)
place_prototype = torch.zeros(prototype.shape, device=target_device)
place_emb = self.place_emb(place_vector, place_prototype) # Unconditional embedding
cond_noise = self.unet(x, t, guide_emb) # Conditioned UNet pass
uncond_noise = self.unet(x, t, place_emb) # Unconditioned UNet pass (for classifier-free guidance)
# Classifier-free guidance
pred_noise = cond_noise + self.guidance_scale * (cond_noise -
uncond_noise)
return pred_noise
class WeightedLoss(nn.Module):
"""Base class for weighted losses."""
def __init__(self):
super(WeightedLoss, self).__init__()
def forward(self, pred, target, weighted=1.0):
"""
pred, target:[batch_size, 2, traj_length]
"""
loss = self._loss(pred, target)
weightedLoss = (loss * weighted).mean() # Apply weights and average
# loss = self._loss(weighted * pred, weighted * target)
# weightedLoss = loss.mean()
return weightedLoss
class WeightedL1(WeightedLoss):
"""Weighted L1 Loss (Mean Absolute Error)."""
def _loss(self, pred, target):
return torch.abs(pred - target)
class WeightedL2(WeightedLoss):
"""Weighted L2 Loss (Mean Squared Error)."""
def _loss(self, pred, target):
return F.mse_loss(pred, target, reduction='none')
class WeightedL3(WeightedLoss):
"""A custom weighted L3-like loss, where weights depend on the error magnitude."""
def __init__(self, base_weight=1000.0, scale_factor=10000.0):
super(WeightedL3, self).__init__()
self.base_weight = base_weight
self.scale_factor = scale_factor
def _loss(self, pred, target):
error = F.mse_loss(pred, target, reduction='none')
weight = self.base_weight + self.scale_factor * error
loss = weight * torch.abs(pred - target)
return loss
Losses = {
'l1': WeightedL1,
'l2': WeightedL2,
'l3': WeightedL3,
}
def extract(a, t, x_shape):
"""Extracts values from a (typically constants like alphas) at given timesteps t
and reshapes them to match the batch shape x_shape.
"""
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1))) # Reshape to (b, 1, 1, ...) for broadcasting
class Diffusion(nn.Module):
"""Denoising Diffusion Probabilistic Model (DDPM).
This class now also includes DDIM sampling capabilities.
"""
def __init__(self, loss_type, config, clip_denoised=True, predict_epsilon=True, **kwargs):
super(Diffusion, self).__init__()
self.predict_epsilon = predict_epsilon
self.T = config.diffusion.num_diffusion_timesteps
self.model = Guide_UNet(config)
self.beta_schedule = config.diffusion.beta_schedule
self.beta_start = config.diffusion.beta_start
self.beta_end = config.diffusion.beta_end
if self.beta_schedule == "linear":
betas = torch.linspace(self.beta_start, self.beta_end, self.T, dtype=torch.float32)
elif self.beta_schedule == "cosine":
# Implement cosine schedule
pass
else:
raise ValueError(f"Unsupported beta_schedule: {self.beta_schedule}")
alphas = 1.0 - betas
alpha_cumprod = torch.cumprod(alphas, axis=0)
alpha_cumprod_prev = torch.cat([torch.ones(1, device=betas.device), alpha_cumprod[:-1]])
self.register_buffer("betas", betas)
self.register_buffer("alphas", alphas)
self.register_buffer("alpha_cumprod", alpha_cumprod)
self.register_buffer("alpha_cumprod_prev", alpha_cumprod_prev)
# Parameters for q(x_t | x_0) (forward process - DDPM & DDIM)
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alpha_cumprod))
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alpha_cumprod))
# Parameters for DDPM reverse process posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)
self.register_buffer("posterior_variance", posterior_variance)
self.register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20)))
self.register_buffer("posterior_mean_coef1", betas * torch.sqrt(alpha_cumprod_prev) / (1.0 - alpha_cumprod))
self.register_buffer("posterior_mean_coef2", (1.0 - alpha_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alpha_cumprod))
# Parameters for computing x_0 from x_t and noise (used in DDPM prediction and DDIM sampling)
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod))
self.register_buffer("sqrt_recipminus_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod - 1))
self.loss_fn = Losses[loss_type]()
def q_posterior(self, x_start, x, t):
"""Compute the mean, variance, and log variance of the posterior q(x_{t-1} | x_t, x_0)."""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x.shape) * x_start
+ extract(self.posterior_mean_coef2, t, x.shape) * x
)
posterior_variance = extract(self.posterior_variance, t, x.shape)
posterior_log_variance = extract(self.posterior_log_variance_clipped, t, x.shape)
return posterior_mean, posterior_variance, posterior_log_variance
def predict_start_from_noise(self, x, t, pred_noise):
"""Compute x_0 from x_t and predicted noise epsilon_theta(x_t, t).
Used by both DDPM and DDIM.
"""
return (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipminus_alphas_cumprod, t, x.shape) * pred_noise
)
def p_mean_variance(self, x, t, attr, prototype):
"""Compute the mean and variance of the reverse process p_theta(x_{t-1} | x_t)."""
pred_noise = self.model(x, t, attr, prototype)
x_recon = self.predict_start_from_noise(x, t, pred_noise) # Predict x0
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_recon, x, t)
return model_mean, posterior_log_variance
def p_sample(self, x, t, attr, prototype, start_end_info):
"""Sample x_{t-1} from the model p_theta(x_{t-1} | x_t) (DDPM step)."""
b = x.shape[0]
model_mean, model_log_variance = self.p_mean_variance(x, t, attr, prototype)
noise = torch.randn_like(x)
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) # No noise when t=0
x = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
# Fix the first and last point for trajectory interpolation
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
return x
def p_sample_loop(self, test_x0, attr, prototype, *args, **kwargs):
"""DDPM sampling loop to generate x_0 from x_T (noise)."""
batch_size = attr.shape[0]
device = attr.device # Assuming attr is on the correct device
x = torch.randn(attr.shape, requires_grad=False, device=device) # Start with pure noise
start_end_info = test_x0.clone() # Contains the ground truth start and end points
# Fix the first and last point from the start
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
for i in reversed(range(0, self.T)): # Iterate from T-1 down to 0
t = torch.full((batch_size,), i, dtype=torch.long, device=device)
x = self.p_sample(x, t, attr, prototype, start_end_info)
return x
# --------------------- DDIM Sampling Methods ---------------------
def ddim_sample(self, x, t, t_prev, attr, prototype, start_end_info, eta=0.0):
"""
DDIM sampling step from t to t_prev.
eta: Controls stochasticity. 0 for DDIM (deterministic), 1 for DDPM-like (stochastic).
"""
# Ensure model is on the same device as x
self.model.to(x.device)
pred_noise = self.model(x, t, attr, prototype)
x_0_pred = self.predict_start_from_noise(x, t, pred_noise)
x_0_pred[:, :, 0] = start_end_info[:, :, 0]
x_0_pred[:, :, -1] = start_end_info[:, :, -1]
alpha_cumprod_t = extract(self.alpha_cumprod, t, x.shape)
alpha_cumprod_t_prev = extract(self.alpha_cumprod, t_prev, x.shape) if t_prev.all() >= 0 else torch.ones_like(alpha_cumprod_t)
sigma_t = eta * torch.sqrt((1 - alpha_cumprod_t_prev) / (1 - alpha_cumprod_t) * (1 - alpha_cumprod_t / alpha_cumprod_t_prev))
c1 = torch.sqrt(alpha_cumprod_t_prev)
c2 = torch.sqrt(1 - alpha_cumprod_t_prev - sigma_t**2)
noise_cond = torch.zeros_like(x)
if eta > 0:
noise_cond = torch.randn_like(x)
noise_cond[:, :, 0] = 0
noise_cond[:, :, -1] = 0
x_prev = c1 * x_0_pred + c2 * pred_noise + sigma_t * noise_cond
x_prev[:, :, 0] = start_end_info[:, :, 0]
x_prev[:, :, -1] = start_end_info[:, :, -1]
return x_prev
def ddim_sample_loop(self, test_x0, attr, prototype, num_steps=50, eta=0.0):
"""
DDIM sampling loop. Can use fewer steps than original diffusion process.
num_steps: Number of sampling steps (can be less than self.T).
eta: Controls stochasticity (0 for deterministic, 1 for fully stochastic).
"""
batch_size = attr.shape[0]
device = attr.device # Assuming attr is on the correct device
x = torch.randn(attr.shape, requires_grad=False, device=device)
start_end_info = test_x0.clone()
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
times = torch.linspace(self.T - 1, 0, num_steps + 1, device=device).long() # Ensure times tensor is on the same device
for i in range(num_steps):
t = times[i]
t_next = times[i + 1]
# Create full tensors for t and t_next for batch processing
t_tensor = torch.full((batch_size,), t.item(), dtype=torch.long, device=device)
t_next_tensor = torch.full((batch_size,), t_next.item(), dtype=torch.long, device=device)
x = self.ddim_sample(x, t_tensor, t_next_tensor, attr, prototype, start_end_info, eta)
return x
# --------------------- Unified Sampling Entry Point ---------------------
def sample(self, test_x0, attr, prototype, sampling_type='ddpm',
ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs):
"""Generate samples using either DDPM or DDIM.
Args:
test_x0 (torch.Tensor): Tensor containing ground truth data, primarily used for start/end points.
attr (torch.Tensor): Attributes for conditioning.
prototype (torch.Tensor): Prototypes for conditioning.
sampling_type (str, optional): 'ddpm' or 'ddim'. Defaults to 'ddpm'.
ddim_num_steps (int, optional): Number of steps for DDIM sampling. Defaults to 50.
ddim_eta (float, optional): Eta for DDIM sampling. Defaults to 0.0.
"""
self.model.eval() # Set model to evaluation mode for sampling
with torch.no_grad():
if sampling_type == 'ddpm':
return self.p_sample_loop(test_x0, attr, prototype, *args, **kwargs)
elif sampling_type == 'ddim':
return self.ddim_sample_loop(test_x0, attr, prototype,
num_steps=ddim_num_steps, eta=ddim_eta)
else:
raise ValueError(f"Unsupported sampling_type: {sampling_type}. Choose 'ddpm' or 'ddim'.")
#----------------------------------training----------------------------------#
def q_sample(self, x_start, t, noise):
"""Sample x_t from x_0 using q(x_t | x_0) = sqrt(alpha_bar_t)x_0 + sqrt(1-alpha_bar_t)noise."""
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
# Keep start and end points fixed during noising process as well (for interpolation task)
sample[:, :, 0] = x_start[:, :, 0]
sample[:, :, -1] = x_start[:, :, -1]
return sample
def p_losses(self, x_start, attr, prototype, t, weights=1.0):
"""Calculate the diffusion loss (typically MSE between predicted noise and actual noise).
This is common for both DDPM and DDIM training.
"""
noise = torch.randn_like(x_start)
# For interpolation, noise is not added to the fixed start/end points
noise[:, :, 0] = 0
noise[:, :, -1] = 0
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.model(x_noisy, t, attr, prototype) # Model predicts noise or x0
assert noise.shape == x_recon.shape
if self.predict_epsilon:
# Loss on the predicted noise, excluding start/end points
loss = self.loss_fn(x_recon[:, :, 1:-1], noise[:, :, 1:-1], weights)
else:
# Loss on the predicted x0, excluding start/end points
loss = self.loss_fn(x_recon[:, :, 1:-1], x_start[:, :, 1:-1], weights)
return loss
def trainer(self, x, attr, prototype, weights=1.0):
"""Performs a single training step. Common for DDPM and DDIM."""
self.model.train() # Set model to training mode
batch_size = len(x)
t = torch.randint(0, self.T, (batch_size,), device=x.device).long() # Sample random timesteps on the same device as x
return self.p_losses(x, attr, prototype, t, weights)
def forward(self, test_x0, attr, prototype, sampling_type='ddpm',
ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs):
"""Default forward pass calls the unified sampling method."""
return self.sample(test_x0, attr, prototype,
sampling_type=sampling_type,
ddim_num_steps=ddim_num_steps,
ddim_eta=ddim_eta,
*args, **kwargs)