|
|
--- |
|
|
library_name: transformers |
|
|
base_model: |
|
|
- zai-org/GLM-5 |
|
|
--- |
|
|
|
|
|
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [zai-org/GLM-5](https://huggingface.co/zai-org/GLM-5). |
|
|
|
|
|
| File path | Size | |
|
|
|------|------| |
|
|
| model.safetensors | 9.0MB | |
|
|
|
|
|
|
|
|
### Example usage: |
|
|
|
|
|
- vLLM |
|
|
|
|
|
```bash |
|
|
# Multi-token prediction is supported |
|
|
model_id=yujiepan/glm-5-tiny-random |
|
|
vllm serve $model_id \ |
|
|
--tensor-parallel-size 2 \ |
|
|
--speculative-config.method mtp \ |
|
|
--speculative-config.num_speculative_tokens 1 \ |
|
|
--tool-call-parser glm47 \ |
|
|
--reasoning-parser glm45 \ |
|
|
--enable-auto-tool-choice |
|
|
``` |
|
|
|
|
|
- SGLang |
|
|
|
|
|
```bash |
|
|
# Multi-token prediction is supported |
|
|
model_id=yujiepan/glm-5-tiny-random |
|
|
python3 -m sglang.launch_server --model-path $model_id --tp-size 2 \ |
|
|
--tool-call-parser glm47 \ |
|
|
--reasoning-parser glm45 \ |
|
|
--speculative-algorithm EAGLE \ |
|
|
--speculative-num-steps 3 \ |
|
|
--speculative-eagle-topk 1 \ |
|
|
--speculative-num-draft-tokens 4 |
|
|
``` |
|
|
|
|
|
- Transformers |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_id = "yujiepan/glm-5-tiny-random" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
input_ids = torch.randint(1000, 2000, size=(1, 2333), dtype=torch.long).cuda() # trigger DSA |
|
|
# messages = [{"role": "user", "content": "hello"}] |
|
|
# input_ids = tokenizer(messages, return_tensors="pt").input_ids.cuda() |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_id, |
|
|
dtype=torch.bfloat16, |
|
|
device_map="cuda", |
|
|
) |
|
|
generated_ids = model.generate(input_ids, max_new_tokens=32) |
|
|
output_text = tokenizer.decode(generated_ids[0][input_ids.shape[1]:]) |
|
|
print(output_text) |
|
|
``` |
|
|
|
|
|
### Codes to create this repo: |
|
|
|
|
|
<details> |
|
|
<summary>Click to expand</summary> |
|
|
|
|
|
```python |
|
|
import json |
|
|
from copy import deepcopy |
|
|
from pathlib import Path |
|
|
|
|
|
import accelerate |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from huggingface_hub import file_exists, hf_hub_download |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModelForCausalLM, |
|
|
AutoProcessor, |
|
|
GenerationConfig, |
|
|
set_seed, |
|
|
) |
|
|
|
|
|
source_model_id = "zai-org/GLM-5" |
|
|
save_folder = "/tmp/yujiepan/glm-5-tiny-random" |
|
|
|
|
|
processor = AutoProcessor.from_pretrained( |
|
|
source_model_id, trust_remote_code=True) |
|
|
processor.save_pretrained(save_folder) |
|
|
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
config_json: dict = json.load(f) |
|
|
|
|
|
head_dim = 64 |
|
|
kv_lora_rank = 512 |
|
|
qk_nope_head_dim = 192 |
|
|
config_json.update({ |
|
|
"first_k_dense_replace": 1, |
|
|
"mlp_layer_types": ['dense'] + ['sparse'], |
|
|
"head_dim": head_dim, |
|
|
"hidden_size": 8, |
|
|
"index_head_dim": 32, |
|
|
"index_n_heads": 4, |
|
|
"intermediate_size": 32, |
|
|
"moe_intermediate_size": 32, |
|
|
"num_hidden_layers": 2, |
|
|
'kv_lora_rank': kv_lora_rank, |
|
|
"num_attention_heads": 4, |
|
|
'num_key_value_heads': 4, |
|
|
'q_lora_rank': 32, |
|
|
"qk_head_dim": qk_nope_head_dim + head_dim, |
|
|
'qk_nope_head_dim': qk_nope_head_dim, |
|
|
'qk_rope_head_dim': head_dim, |
|
|
'v_head_dim': qk_nope_head_dim + head_dim, |
|
|
"tie_word_embeddings": True, |
|
|
}) |
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
|
save_folder, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print(config) |
|
|
torch.set_default_dtype(torch.bfloat16) |
|
|
model = AutoModelForCausalLM.from_config(config) |
|
|
torch.set_default_dtype(torch.float32) |
|
|
|
|
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
|
model.generation_config = GenerationConfig.from_pretrained( |
|
|
source_model_id, trust_remote_code=True, |
|
|
) |
|
|
model.generation_config.do_sample = True |
|
|
print(model.generation_config) |
|
|
|
|
|
model = model.cpu() |
|
|
set_seed(42) |
|
|
n_params = sum(p.numel() for p in model.parameters()) |
|
|
with torch.no_grad(): |
|
|
for name, p in sorted(model.named_parameters()): |
|
|
torch.nn.init.normal_(p, 0, 0.1) |
|
|
print(name, p.shape, p.numel() / n_params * 100, '%') |
|
|
# MTP |
|
|
set_seed(42) |
|
|
model.model.layers.append(nn.ModuleDict(dict( |
|
|
shared_head=nn.ModuleDict(dict( |
|
|
norm=nn.RMSNorm(config.hidden_size), |
|
|
# head=deepcopy(model.model.embed_tokens), |
|
|
)), |
|
|
# embed_tokens=deepcopy(model.model.embed_tokens), |
|
|
eh_proj=nn.Linear(config.hidden_size * 2, |
|
|
config.hidden_size, bias=False), |
|
|
enorm=nn.RMSNorm(config.hidden_size), |
|
|
hnorm=nn.RMSNorm(config.hidden_size), |
|
|
input_layernorm=nn.RMSNorm(config.hidden_size), |
|
|
post_attention_layernorm=nn.RMSNorm(config.hidden_size), |
|
|
self_attn=deepcopy(model.model.layers[1].self_attn), |
|
|
mlp=deepcopy(model.model.layers[1].mlp), |
|
|
))) |
|
|
for i in range(1, len(model.model.layers)): |
|
|
model.model.layers[i].mlp.gate.e_score_correction_bias = torch.rand_like( |
|
|
model.model.layers[i].mlp.gate.e_score_correction_bias).float() |
|
|
model.save_pretrained(save_folder) |
|
|
print(model) |
|
|
``` |
|
|
|
|
|
</details> |
|
|
|
|
|
### Printing the model: |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
```text |
|
|
GlmMoeDsaForCausalLM( |
|
|
(model): GlmMoeDsaModel( |
|
|
(embed_tokens): Embedding(154880, 8, padding_idx=154820) |
|
|
(layers): ModuleList( |
|
|
(0): GlmMoeDsaDecoderLayer( |
|
|
(self_attn): GlmMoeDsaAttention( |
|
|
(q_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) |
|
|
(q_b_proj): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) |
|
|
(kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) |
|
|
(kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) |
|
|
(o_proj): Linear(in_features=1024, out_features=8, bias=False) |
|
|
(wq_b): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(wk): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) |
|
|
(weights_proj): Linear(in_features=8, out_features=4, bias=False) |
|
|
) |
|
|
(mlp): GlmMoeDsaMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
(input_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) |
|
|
(post_attention_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) |
|
|
) |
|
|
(1): GlmMoeDsaDecoderLayer( |
|
|
(self_attn): GlmMoeDsaAttention( |
|
|
(q_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) |
|
|
(q_b_proj): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) |
|
|
(kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) |
|
|
(kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) |
|
|
(o_proj): Linear(in_features=1024, out_features=8, bias=False) |
|
|
(wq_b): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(wk): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) |
|
|
(weights_proj): Linear(in_features=8, out_features=4, bias=False) |
|
|
) |
|
|
(mlp): GlmMoeDsaMoE( |
|
|
(experts): GlmMoeDsaNaiveMoe( |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
(gate): GlmMoeDsaTopkRouter() |
|
|
(shared_experts): GlmMoeDsaMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
(input_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) |
|
|
(post_attention_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) |
|
|
) |
|
|
(2): ModuleDict( |
|
|
(shared_head): ModuleDict( |
|
|
(norm): RMSNorm((8,), eps=None, elementwise_affine=True) |
|
|
) |
|
|
(eh_proj): Linear(in_features=16, out_features=8, bias=False) |
|
|
(enorm): RMSNorm((8,), eps=None, elementwise_affine=True) |
|
|
(hnorm): RMSNorm((8,), eps=None, elementwise_affine=True) |
|
|
(input_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) |
|
|
(post_attention_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) |
|
|
(self_attn): GlmMoeDsaAttention( |
|
|
(q_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) |
|
|
(q_b_proj): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) |
|
|
(kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) |
|
|
(kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) |
|
|
(o_proj): Linear(in_features=1024, out_features=8, bias=False) |
|
|
(wq_b): Linear(in_features=32, out_features=1024, bias=False) |
|
|
(wk): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) |
|
|
(weights_proj): Linear(in_features=8, out_features=4, bias=False) |
|
|
) |
|
|
(mlp): GlmMoeDsaMoE( |
|
|
(experts): GlmMoeDsaNaiveMoe( |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
(gate): GlmMoeDsaTopkRouter() |
|
|
(shared_experts): GlmMoeDsaMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
) |
|
|
) |
|
|
(norm): GlmMoeDsaRMSNorm((8,), eps=1e-05) |
|
|
(rotary_emb): GlmMoeDsaRotaryEmbedding() |
|
|
) |
|
|
(lm_head): Linear(in_features=8, out_features=154880, bias=False) |
|
|
) |
|
|
``` |
|
|
|
|
|
</details> |