Rax 4.0 Chat - Enterprise Deployment Guide
RaxCore Technologies - Premier AI Innovation Company
π Enterprise Deployment Options
Cloud Deployment
AWS Deployment
# Install AWS CLI and configure
pip install boto3 sagemaker
# Deploy to SageMaker
python deploy_aws.py --instance-type ml.g4dn.xlarge --model-name rax-4.0-chat
Azure Deployment
# Azure Machine Learning deployment
az ml model deploy --name rax-4.0-chat --model rax-4.0:1 --compute-target aks-cluster
Google Cloud Deployment
# Vertex AI deployment
gcloud ai models upload --region=us-central1 --display-name=rax-4.0-chat
On-Premises Deployment
Docker Container
FROM nvidia/cuda:11.8-runtime-ubuntu20.04
# Install dependencies
RUN pip install transformers torch accelerate
# Copy model
COPY . /app/rax-4.0-chat
# Set environment
ENV MODEL_PATH=/app/rax-4.0-chat
ENV CUDA_VISIBLE_DEVICES=0
# Run inference server
CMD ["python", "inference_server.py"]
Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: rax-4.0-chat
spec:
replicas: 3
selector:
matchLabels:
app: rax-4.0-chat
template:
metadata:
labels:
app: rax-4.0-chat
spec:
containers:
- name: rax-4.0
image: raxcore/rax-4.0-chat:latest
resources:
limits:
nvidia.com/gpu: 1
memory: "32Gi"
requests:
nvidia.com/gpu: 1
memory: "16Gi"
π‘οΈ Security Configuration
Enterprise Security Settings
# Security configuration
SECURITY_CONFIG = {
"encryption": "AES-256",
"authentication": "OAuth2",
"audit_logging": True,
"data_retention": "90_days",
"compliance": ["GDPR", "CCPA", "SOC2"]
}
Access Control
# Role-based access control
RBAC_CONFIG = {
"admin": ["read", "write", "deploy", "monitor"],
"developer": ["read", "write", "test"],
"user": ["read", "inference"],
"viewer": ["read"]
}
π Monitoring & Analytics
Performance Monitoring
# Monitoring configuration
MONITORING_CONFIG = {
"metrics": ["latency", "throughput", "accuracy", "resource_usage"],
"alerts": {
"high_latency": "> 2000ms",
"low_accuracy": "< 85%",
"resource_usage": "> 90%"
},
"dashboards": ["grafana", "prometheus", "custom"]
}
Logging Configuration
# Enterprise logging
LOGGING_CONFIG = {
"level": "INFO",
"format": "json",
"destinations": ["file", "elasticsearch", "splunk"],
"retention": "1_year",
"compliance": True
}
π§ Performance Optimization
GPU Optimization
# GPU configuration for optimal performance
GPU_CONFIG = {
"precision": "bfloat16",
"batch_size": 8,
"max_sequence_length": 4096,
"gradient_checkpointing": True,
"mixed_precision": True
}
Memory Optimization
# Memory optimization settings
MEMORY_CONFIG = {
"model_sharding": True,
"cpu_offload": False,
"cache_size": "8GB",
"garbage_collection": "aggressive"
}
π Load Balancing & Scaling
Auto-scaling Configuration
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: rax-4.0-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: rax-4.0-chat
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Load Balancer Configuration
# NGINX load balancer
upstream rax_4_0_backend {
least_conn;
server rax-4.0-1:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-2:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-3:8000 weight=1 max_fails=3 fail_timeout=30s;
}
server {
listen 443 ssl http2;
server_name api.raxcore.dev;
location /v1/chat {
proxy_pass http://rax_4_0_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
π Compliance & Governance
Data Governance
# Data governance policies
DATA_GOVERNANCE = {
"data_classification": "confidential",
"retention_policy": "7_years",
"encryption_at_rest": True,
"encryption_in_transit": True,
"audit_trail": True,
"data_lineage": True
}
Compliance Frameworks
- GDPR: European data protection compliance
- CCPA: California privacy compliance
- SOC 2: Security and availability controls
- ISO 27001: Information security management
- HIPAA: Healthcare data protection (optional)
π CI/CD Pipeline
Deployment Pipeline
# GitHub Actions workflow
name: Deploy Rax 4.0 Chat
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Build Docker image
run: docker build -t raxcore/rax-4.0-chat:${{ github.sha }} .
- name: Run security scan
run: docker scan raxcore/rax-4.0-chat:${{ github.sha }}
- name: Deploy to staging
run: kubectl apply -f k8s/staging/
- name: Run integration tests
run: python test_integration.py
- name: Deploy to production
if: success()
run: kubectl apply -f k8s/production/
π Enterprise Support
24/7 Support Channels
- Critical Issues: +1-800-RAX-CORE (24/7)
- Technical Support: support@raxcore.dev
- Enterprise Sales: enterprise@raxcore.dev
- Professional Services: consulting@raxcore.dev
Support Tiers
- Enterprise Premium: 15-minute response time
- Enterprise Standard: 2-hour response time
- Professional: 8-hour response time
- Community: Best effort support
Professional Services
- Implementation Consulting: Custom deployment assistance
- Performance Optimization: Tuning for specific workloads
- Custom Training: Domain-specific model fine-tuning
- Integration Services: API and system integration
- Training Programs: Team training and certification
π― Best Practices
Security Best Practices
- Enable all security features by default
- Use strong authentication and authorization
- Implement comprehensive audit logging
- Regular security assessments and updates
- Data encryption at rest and in transit
Performance Best Practices
- Use appropriate hardware for workload
- Implement proper caching strategies
- Monitor and optimize resource usage
- Use batch processing for high throughput
- Implement circuit breakers for resilience
Operational Best Practices
- Comprehensive monitoring and alerting
- Regular backups and disaster recovery testing
- Automated deployment and rollback procedures
- Capacity planning and scaling strategies
- Regular performance and security reviews
RaxCore Technologies - Pioneering AI Innovation from Africa to the World
π Enterprise Support: +1-800-RAX-CORE | enterprise@raxcore.dev
π Website: www.raxcore.dev
Rax 4.0 Chat - Enterprise-Ready AI for Mission-Critical Applications