rax-4 / DEPLOYMENT.md
raxder-ai's picture
πŸš€ Upload Rax 4.0 Chat - Enterprise Edition with RaxCore Enhancements
af4c42c verified
# Rax 4.0 Chat - Enterprise Deployment Guide
**RaxCore Technologies - Premier AI Innovation Company**
## πŸš€ Enterprise Deployment Options
### **Cloud Deployment**
#### **AWS Deployment**
```bash
# Install AWS CLI and configure
pip install boto3 sagemaker
# Deploy to SageMaker
python deploy_aws.py --instance-type ml.g4dn.xlarge --model-name rax-4.0-chat
```
#### **Azure Deployment**
```bash
# Azure Machine Learning deployment
az ml model deploy --name rax-4.0-chat --model rax-4.0:1 --compute-target aks-cluster
```
#### **Google Cloud Deployment**
```bash
# Vertex AI deployment
gcloud ai models upload --region=us-central1 --display-name=rax-4.0-chat
```
### **On-Premises Deployment**
#### **Docker Container**
```dockerfile
FROM nvidia/cuda:11.8-runtime-ubuntu20.04
# Install dependencies
RUN pip install transformers torch accelerate
# Copy model
COPY . /app/rax-4.0-chat
# Set environment
ENV MODEL_PATH=/app/rax-4.0-chat
ENV CUDA_VISIBLE_DEVICES=0
# Run inference server
CMD ["python", "inference_server.py"]
```
#### **Kubernetes Deployment**
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: rax-4.0-chat
spec:
replicas: 3
selector:
matchLabels:
app: rax-4.0-chat
template:
metadata:
labels:
app: rax-4.0-chat
spec:
containers:
- name: rax-4.0
image: raxcore/rax-4.0-chat:latest
resources:
limits:
nvidia.com/gpu: 1
memory: "32Gi"
requests:
nvidia.com/gpu: 1
memory: "16Gi"
```
## πŸ›‘οΈ Security Configuration
### **Enterprise Security Settings**
```python
# Security configuration
SECURITY_CONFIG = {
"encryption": "AES-256",
"authentication": "OAuth2",
"audit_logging": True,
"data_retention": "90_days",
"compliance": ["GDPR", "CCPA", "SOC2"]
}
```
### **Access Control**
```python
# Role-based access control
RBAC_CONFIG = {
"admin": ["read", "write", "deploy", "monitor"],
"developer": ["read", "write", "test"],
"user": ["read", "inference"],
"viewer": ["read"]
}
```
## πŸ“Š Monitoring & Analytics
### **Performance Monitoring**
```python
# Monitoring configuration
MONITORING_CONFIG = {
"metrics": ["latency", "throughput", "accuracy", "resource_usage"],
"alerts": {
"high_latency": "> 2000ms",
"low_accuracy": "< 85%",
"resource_usage": "> 90%"
},
"dashboards": ["grafana", "prometheus", "custom"]
}
```
### **Logging Configuration**
```python
# Enterprise logging
LOGGING_CONFIG = {
"level": "INFO",
"format": "json",
"destinations": ["file", "elasticsearch", "splunk"],
"retention": "1_year",
"compliance": True
}
```
## πŸ”§ Performance Optimization
### **GPU Optimization**
```python
# GPU configuration for optimal performance
GPU_CONFIG = {
"precision": "bfloat16",
"batch_size": 8,
"max_sequence_length": 4096,
"gradient_checkpointing": True,
"mixed_precision": True
}
```
### **Memory Optimization**
```python
# Memory optimization settings
MEMORY_CONFIG = {
"model_sharding": True,
"cpu_offload": False,
"cache_size": "8GB",
"garbage_collection": "aggressive"
}
```
## 🌐 Load Balancing & Scaling
### **Auto-scaling Configuration**
```yaml
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: rax-4.0-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: rax-4.0-chat
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
```
### **Load Balancer Configuration**
```nginx
# NGINX load balancer
upstream rax_4_0_backend {
least_conn;
server rax-4.0-1:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-2:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-3:8000 weight=1 max_fails=3 fail_timeout=30s;
}
server {
listen 443 ssl http2;
server_name api.raxcore.dev;
location /v1/chat {
proxy_pass http://rax_4_0_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
```
## πŸ“‹ Compliance & Governance
### **Data Governance**
```python
# Data governance policies
DATA_GOVERNANCE = {
"data_classification": "confidential",
"retention_policy": "7_years",
"encryption_at_rest": True,
"encryption_in_transit": True,
"audit_trail": True,
"data_lineage": True
}
```
### **Compliance Frameworks**
- **GDPR**: European data protection compliance
- **CCPA**: California privacy compliance
- **SOC 2**: Security and availability controls
- **ISO 27001**: Information security management
- **HIPAA**: Healthcare data protection (optional)
## πŸ”„ CI/CD Pipeline
### **Deployment Pipeline**
```yaml
# GitHub Actions workflow
name: Deploy Rax 4.0 Chat
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Build Docker image
run: docker build -t raxcore/rax-4.0-chat:${{ github.sha }} .
- name: Run security scan
run: docker scan raxcore/rax-4.0-chat:${{ github.sha }}
- name: Deploy to staging
run: kubectl apply -f k8s/staging/
- name: Run integration tests
run: python test_integration.py
- name: Deploy to production
if: success()
run: kubectl apply -f k8s/production/
```
## πŸ“ž Enterprise Support
### **24/7 Support Channels**
- **Critical Issues**: +1-800-RAX-CORE (24/7)
- **Technical Support**: support@raxcore.dev
- **Enterprise Sales**: enterprise@raxcore.dev
- **Professional Services**: consulting@raxcore.dev
### **Support Tiers**
1. **Enterprise Premium**: 15-minute response time
2. **Enterprise Standard**: 2-hour response time
3. **Professional**: 8-hour response time
4. **Community**: Best effort support
### **Professional Services**
- **Implementation Consulting**: Custom deployment assistance
- **Performance Optimization**: Tuning for specific workloads
- **Custom Training**: Domain-specific model fine-tuning
- **Integration Services**: API and system integration
- **Training Programs**: Team training and certification
## 🎯 Best Practices
### **Security Best Practices**
1. Enable all security features by default
2. Use strong authentication and authorization
3. Implement comprehensive audit logging
4. Regular security assessments and updates
5. Data encryption at rest and in transit
### **Performance Best Practices**
1. Use appropriate hardware for workload
2. Implement proper caching strategies
3. Monitor and optimize resource usage
4. Use batch processing for high throughput
5. Implement circuit breakers for resilience
### **Operational Best Practices**
1. Comprehensive monitoring and alerting
2. Regular backups and disaster recovery testing
3. Automated deployment and rollback procedures
4. Capacity planning and scaling strategies
5. Regular performance and security reviews
---
**RaxCore Technologies** - Pioneering AI Innovation from Africa to the World
πŸ“ž **Enterprise Support**: +1-800-RAX-CORE | enterprise@raxcore.dev
🌐 **Website**: [www.raxcore.dev](https://www.raxcore.dev/)
*Rax 4.0 Chat - Enterprise-Ready AI for Mission-Critical Applications*